

	Quickstart

	API
	Client API

	PubSubClient API

	Pipeline API

	Pool API

	Exceptions

	Connection API

Quickstart

Requirements

	Python 2.7 or Python >= 3.2

	unix operating system (linux, osx…)

	a running redis server (>= 2.0)

Installation

With pip [https://pypi.python.org/pypi/pip] (without pip see at then end of this document):

pip install tornadis

First try (coroutines)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	# Let's import tornado and tornadis
import tornado
import tornadis

@tornado.gen.coroutine
def talk_to_redis():
 # let's (re)connect (autoconnect mode), call the ping redis command
 # and wait the reply without blocking the tornado ioloop
 # Note: call() method on Client instance returns a Future object (and
 # should be used as a coroutine).
 result = yield client.call("PING")
 if isinstance(result, tornadis.TornadisException):
 # For specific reasons, tornadis nearly never raises any exception
 # they are returned as result
 print "got exception: %s" % result
 else:
 # result is already a python object (a string in this simple example)
 print "Result: %s" % result

Build a tornadis.Client object with some options as kwargs
host: redis host to connect
port: redis port to connect
autoconnect=True: put the Client object in auto(re)connect mode
client = tornadis.Client(host="localhost", port=6379, autoconnect=True)

Start a tornado IOLoop, execute the coroutine and end the program
loop = tornado.ioloop.IOLoop.instance()
loop.run_sync(talk_to_redis)

Second try (callbacks)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	# Let's import tornado and tornadis
import tornado
import tornadis

def ping_callback(result):
 if not isinstance(result, tornadis.TornadisException):
 # For specific reasons, tornadis nearly never raises any exception
 # they are returned as result
 print "got exception: %s" % result
 else:
 # result is already a python object (a string in this simple example)
 print "Result: %s" % result

@tornado.gen.coroutine
def main():
 # let's (re)connect (autoconnect mode), call the ping redis command
 # and wait the reply without blocking the tornado ioloop
 # Note: async_call() method on Client instance does not return anything
 # but the callback will be called later with the result.
 client.async_call("PING", callback=ping_callback)
 yield tornado.gen.sleep(1)

Build a tornadis.Client object with some options as kwargs
host: redis host to connect
port: redis port to connect
autoconnect=True: put the Client object in auto(re)connect mode
client = tornadis.Client(host="localhost", port=6379, autoconnect=True)

Start a tornado IOLoop, execute the coroutine and end the program
loop = tornado.ioloop.IOLoop.instance()
loop.run_sync(main)

Go further: Pipeline

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	# Let's import tornado and tornadis
import tornado
import tornadis

@tornado.gen.coroutine
def pipeline_coroutine():
 # Let's make a pipeline object to stack commands inside
 pipeline = tornadis.Pipeline()
 pipeline.stack_call("SET", "foo", "bar")
 pipeline.stack_call("GET", "foo")

 # At this point, nothing is sent to redis

 # let's (re)connect (autoconnect mode), send the pipeline of requests
 # (atomic mode) and wait all replies without blocking the tornado ioloop.
 results = yield client.call(pipeline)

 if isinstance(results, tornadis.TornadisException):
 # For specific reasons, tornadis nearly never raises any exception
 # they are returned as results
 print "got exception: %s" % results
 else:
 # The two replies are in the results array
 print results
 # >>> ['OK', 'bar']

Build a tornadis.Client object with some options as kwargs
host: redis host to connect
port: redis port to connect
autoconnect=True: put the Client object in auto(re)connect mode
client = tornadis.Client(host="localhost", port=6379, autoconnect=True)

Start a tornado IOLoop, execute the coroutine and end the program
loop = tornado.ioloop.IOLoop.instance()
loop.run_sync(pipeline_coroutine)

Installation without pip

	install tornado [http://www.tornadoweb.org/] >= 4.2

	install python wrapper for hiredis [https://github.com/redis/hiredis-py]

	install six [https://pythonhosted.org/six/]

	download and uncompress a tornadis release [https://github.com/thefab/tornadis/releases]

	run python setup.py install in the tornadis directory

API

	Client API

	PubSubClient API

	Pipeline API

	Pool API

	Exceptions

	Connection API

Client API

	
class tornadis.Client(autoconnect=True, password=None, db=0, **connection_kwargs)

	Bases: object

High level object to interact with redis.

	Variables

	
	autoconnect (boolean) – True if the client is in autoconnect mode
(and in autoreconnection mode) (default True).

	password (string) – the password to authenticate with.

	db (int) – database number.

	connection_kwargs (dict) – Connection object
kwargs (note that read_callback and close_callback args are
set automatically).

	
__init__(autoconnect=True, password=None, db=0, **connection_kwargs)

	Constructor.

	Parameters

	
	autoconnect (boolean) – True if the client is in autoconnect mode
(and in autoreconnection mode) (default True).

	password (string) – the password to authenticate with.

	db (int) – database number.

	**connection_kwargs – Connection object kwargs.

	
async_call(*args, **kwargs)

	Calls a redis command, waits for the reply and call a callback.

Following options are available (not part of the redis command itself):

	
	callback

	Function called (with the result as argument) when the result
is available. If not set, the reply is silently discarded. In
case of errors, the callback is called with a
TornadisException object as argument.

	Parameters

	
	*args – full redis command as variable length argument list or
a Pipeline object (as a single argument).

	**kwargs – options as keyword parameters.

Examples

>>> def cb(result):
 pass
>>> client.async_call("HSET", "key", "field", "val", callback=cb)

	
call(*args, **kwargs)

	Calls a redis command and returns a Future of the reply.

	Parameters

	
	*args – full redis command as variable length argument list or
a Pipeline object (as a single argument).

	**kwargs – internal private options (do not use).

	Returns

	
	a Future with the decoded redis reply as result (when available) or

	a ConnectionError object in case of connection error.

	Raises

	ClientError – your Pipeline object is empty.

Examples

>>> @tornado.gen.coroutine
 def foobar():
 client = Client()
 result = yield client.call("HSET", "key", "field", "val")

	
connect(*args, **kwargs)

	Connects the client object to redis.

It’s safe to use this method even if you are already connected.
Note: this method is useless with autoconnect mode (default).

	Returns

	a Future object with True as result if the connection was ok.

	
disconnect()

	Disconnects the client object from redis.

It’s safe to use this method even if you are already disconnected.

	
is_connected()

	Returns True is the client is connected to redis.

	Returns

	True if the client if connected to redis.

PubSubClient API

	
class tornadis.PubSubClient(autoconnect=True, password=None, db=0, **connection_kwargs)

	Bases: tornadis.client.Client

High level specific object to interact with pubsub redis.

The call() method is forbidden with this object.

More informations on the redis side: http://redis.io/topics/pubsub

	
__init__(autoconnect=True, password=None, db=0, **connection_kwargs)

	Constructor.

	Parameters

	
	autoconnect (boolean) – True if the client is in autoconnect mode
(and in autoreconnection mode) (default True).

	password (string) – the password to authenticate with.

	db (int) – database number.

	**connection_kwargs – Connection object kwargs.

	
async_call(*args, **kwargs)

	Not allowed method with PubSubClient object.

	
call(*args, **kwargs)

	Not allowed method with PubSubClient object.

	
connect(*args, **kwargs)

	Connects the client object to redis.

It’s safe to use this method even if you are already connected.
Note: this method is useless with autoconnect mode (default).

	Returns

	a Future object with True as result if the connection was ok.

	
disconnect()

	Disconnects the client object from redis.

It’s safe to use this method even if you are already disconnected.

	
is_connected()

	Returns True is the client is connected to redis.

	Returns

	True if the client if connected to redis.

	
pubsub_pop_message(*args, **kwargs)

	Pops a message for a subscribed client.

	Parameters

	deadline (int) – max number of seconds to wait (None => no timeout)

	Returns

	
	Future with the popped message as result (or None if timeout

	or ConnectionError object in case of connection errors
or ClientError object if you are not subscribed)

	
pubsub_psubscribe(*args)

	Subscribes to a list of patterns.

http://redis.io/topics/pubsub

	Parameters

	*args – variable list of patterns to subscribe.

	Returns

	Future with True as result if the subscribe is ok.

	Return type

	Future

Examples

>>> yield client.pubsub_psubscribe("channel*", "foo*")

	
pubsub_punsubscribe(*args)

	Unsubscribes from a list of patterns.

http://redis.io/topics/pubsub

	Parameters

	*args – variable list of patterns to unsubscribe.

	Returns

	Future with True as result if the unsubscribe is ok.

	Return type

	Future

Examples

>>> yield client.pubsub_punsubscribe("channel*", "foo*")

	
pubsub_subscribe(*args)

	Subscribes to a list of channels.

http://redis.io/topics/pubsub

	Parameters

	*args – variable list of channels to subscribe.

	Returns

	Future with True as result if the subscribe is ok.

	Return type

	Future

Examples

>>> yield client.pubsub_subscribe("channel1", "channel2")

	
pubsub_unsubscribe(*args)

	Unsubscribes from a list of channels.

http://redis.io/topics/pubsub

	Parameters

	*args – variable list of channels to unsubscribe.

	Returns

	Future with True as result if the unsubscribe is ok.

	Return type

	Future

Examples

>>> yield client.pubsub_unsubscribe("channel1", "channel2")

Pipeline API

	
class tornadis.Pipeline

	Bases: object

Pipeline class to stack redis commands.

A pipeline object is just a kind of stack. You stack complete redis
commands (with their corresponding arguments) inside it.

Then, you use the call() method of a Client object to process the pipeline
(which must be the only argument of this call() call).

More informations on the redis side: http://redis.io/topics/pipelining

	Variables

	
	pipelined_args – A list of tuples, earch tuple is a complete
redis command.

	number_of_stacked_calls – the number of stacked redis commands
(integer).

	
__init__()

	Constructor.

	
stack_call(*args)

	Stacks a redis command inside the object.

The syntax is the same than the call() method a Client class.

	Parameters

	*args – full redis command as variable length argument list.

Examples

>>> pipeline = Pipeline()
>>> pipeline.stack_call("HSET", "key", "field", "value")
>>> pipeline.stack_call("PING")
>>> pipeline.stack_call("INCR", "key2")

Pool API

	
class tornadis.ClientPool(max_size=-1, client_timeout=-1, autoclose=False, **client_kwargs)

	Bases: object

High level object to deal with a pool of redis clients.

	
__init__(max_size=-1, client_timeout=-1, autoclose=False, **client_kwargs)

	Constructor.

	Parameters

	
	max_size (int) – max size of the pool (-1 means “no limit”).

	client_timeout (int) – timeout in seconds of a connection released
to the pool (-1 means “no timeout”).

	autoclose (boolean) – automatically disconnect released connections
with lifetime > client_timeout (test made every
client_timeout/10 seconds).

	client_kwargs (dict) – Client constructor arguments.

	
connected_client()

	Returns a ContextManagerFuture to be yielded in a with statement.

	Returns

	A ContextManagerFuture object.

Examples

>>> with (yield pool.connected_client()) as client:
 # client is a connected tornadis.Client instance
 # it will be automatically released to the pool thanks to
 # the "with" keyword
 reply = yield client.call("PING")

	
destroy()

	Disconnects all pooled client objects.

	
get_client_nowait()

	Gets a Client object (not necessary connected).

If max_size is reached, this method will return None (and won’t block).

	Returns

	A Client instance (not necessary connected) as result (or None).

	
get_connected_client(*args, **kwargs)

	Gets a connected Client object.

If max_size is reached, this method will block until a new client
object is available.

	Returns

	
	A Future object with connected Client instance as a result

	(or ClientError if there was a connection problem)

	
preconnect(*args, **kwargs)

	(pre)Connects some or all redis clients inside the pool.

	Parameters

	size (int) – number of redis clients to build and to connect
(-1 means all clients if pool max_size > -1)

	Raises

	ClientError – when size == -1 and pool max_size == -1

	
release_client(client)

	Releases a client object to the pool.

	Parameters

	client – Client object.

Exceptions

	
class tornadis.TornadisException

	Bases: exceptions.Exception

Base Exception class.

	
class tornadis.ConnectionError

	Bases: tornadis.exceptions.TornadisException

Exception raised when there is a connection error.

	
class tornadis.ClientError

	Bases: tornadis.exceptions.TornadisException

Exception raised when there is a client error.

Connection API

Warning: this class is not public, it appears here just to document some
kwargs. Do not use directly.

	
class tornadis.Connection(read_callback, close_callback, host='127.0.0.1', port=6379, unix_domain_socket=None, read_page_size=65536, write_page_size=65536, connect_timeout=20, tcp_nodelay=False, aggressive_write=False, read_timeout=0, ioloop=None)

	Low level connection object.

	Variables

	
	host (string) – the host name to connect to.

	port (int) – the port to connect to.

	unix_domain_socket (string) – path to a unix socket to connect to
(if set, overrides host/port parameters).

	read_page_size (int) – page size for reading.

	write_page_size (int) – page size for writing.

	connect_timeout (int) – timeout (in seconds) for connecting.

	tcp_nodelay (boolean) – set TCP_NODELAY on socket.

	aggressive_write (boolean) – try to minimize write latency over
global throughput (default False).

	read_timeout (int) – timeout (in seconds) to read something on
the socket (if nothing is read during this time, the
connection is closed) (default: 0 means no timeout)

	
__init__(read_callback, close_callback, host='127.0.0.1', port=6379, unix_domain_socket=None, read_page_size=65536, write_page_size=65536, connect_timeout=20, tcp_nodelay=False, aggressive_write=False, read_timeout=0, ioloop=None)

	Constructor.

	Parameters

	
	read_callback – callback called when there is something to read
(private, do not use from Client constructor).

	close_callback – callback called when the connection is closed
(private, do not use from Client constructor).

	host (string) – the host name to connect to.

	port (int) – the port to connect to.

	unix_domain_socket (string) – path to a unix socket to connect to
(if set, overrides host/port parameters).

	read_page_size (int) – page size for reading.

	write_page_size (int) – page size for writing.

	connect_timeout (int) – timeout (in seconds) for connecting.

	tcp_nodelay (boolean) – set TCP_NODELAY on socket.

	aggressive_write (boolean) – try to minimize write latency over
global throughput (default False).

	read_timeout (int) – timeout (in seconds) to read something on
the socket (if nothing is read during this time, the
connection is closed) (default: 0 means no timeout)

	ioloop (IOLoop) – the tornado ioloop to use.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 tornadis	

Index

 _
 | A
 | C
 | D
 | G
 | I
 | P
 | R
 | S
 | T

_

 	
 	__init__() (tornadis.Client method)

 	(tornadis.ClientPool method)

 	(tornadis.Connection method)

 	(tornadis.Pipeline method)

 	(tornadis.PubSubClient method)

A

 	
 	async_call() (tornadis.Client method)

 	(tornadis.PubSubClient method)

C

 	
 	call() (tornadis.Client method)

 	(tornadis.PubSubClient method)

 	Client (class in tornadis)

 	ClientError (class in tornadis)

 	ClientPool (class in tornadis)

 	
 	connect() (tornadis.Client method)

 	(tornadis.PubSubClient method)

 	connected_client() (tornadis.ClientPool method)

 	Connection (class in tornadis)

 	ConnectionError (class in tornadis)

D

 	
 	destroy() (tornadis.ClientPool method)

 	
 	disconnect() (tornadis.Client method)

 	(tornadis.PubSubClient method)

G

 	
 	get_client_nowait() (tornadis.ClientPool method)

 	
 	get_connected_client() (tornadis.ClientPool method)

I

 	
 	is_connected() (tornadis.Client method)

 	(tornadis.PubSubClient method)

P

 	
 	Pipeline (class in tornadis)

 	preconnect() (tornadis.ClientPool method)

 	pubsub_pop_message() (tornadis.PubSubClient method)

 	pubsub_psubscribe() (tornadis.PubSubClient method)

 	
 	pubsub_punsubscribe() (tornadis.PubSubClient method)

 	pubsub_subscribe() (tornadis.PubSubClient method)

 	pubsub_unsubscribe() (tornadis.PubSubClient method)

 	PubSubClient (class in tornadis)

R

 	
 	release_client() (tornadis.ClientPool method)

S

 	
 	stack_call() (tornadis.Pipeline method)

T

 	
 	tornadis (module), [1], [2], [3], [4], [5]

 	
 	TornadisException (class in tornadis)

Introduction

FIXME: to update !!!

Let’s see how to get started with tornadis using the Client class: In
the following example, we connect to Redis and terminate the program
when we’re connected or if an error occurs:

tornadis/examples/connection.py
import tornado
import tornadis

loop = tornado.ioloop.IOLoop.instance()

def connection_callback(future):
 exception = future.exception()
 if exception is None:
 print("We are connected to Redis")
 else:
 print("Error: %s" % exception)
 loop.stop()

client = tornadis.Client()
future = client.connect()
loop.add_future(future, connection_callback)
loop.start()

While this example in itself is not very useful, it demonstrates the
asynchronous nature of Tornadis. The statement client.connect()
doesn’t block but returns a tornado Future. When adding
the future to the I/O event loop, we also specify a callback function which
wil be called once the future has done its job. In the callback, we
check if the execution of the future has raised any exception.

Now that we know how to connect to Redis, let’s try to send a PING
command:

tornadis/examples/callbacks.py
imports omitted for brievety

loop = tornado.ioloop.IOLoop.instance()
client = tornadis.Client()

def ping_callback(ping_future):
 exception = ping_future.exception()
 if exception is None:
 print("Command result: %s" % ping_future.result())
 else:
 print("Error: %s" % exception)
 loop.stop()

def connection_callback(connect_future):
 exception = connect_future.exception()
 if exception is None:
 print("We are connected to Redis")
 ping_future = client.call("PING")
 loop.add_future(ping_future, ping_callback)
 else:
 print("Error: %s" % exception)

connect_future = client.connect()
loop.add_future(connect_future, connection_callback)
loop.start()

In the callback that gets executed once we’re connected to Redis, we
call the client’s call method, which also returns a Tornado future.
We add that future to the I/O loop, also specifying a callback to
execute once the command has completed. If we need to send a longer
sequence of commands to Redis, you can see how this style of
asynchronous programming can quickly lead to a tangled chain of callback
functions.

Fortunately, Tornado and therefore Tornadis allow a different style of asynchronous code using
coroutines based on Python generators. Let’s refactor the previous code
snippet to use a coroutine:

tornadis/examples/coroutines.py
loop = tornado.ioloop.IOLoop.instance()
client = tornadis.Client()

def callback(future):
 exception = future.exception()
 if exception is not None:
 raise exception
 loop.stop()

@tornado.gen.coroutine
def talk_to_redis():
 yield client.connect()
 result = yield client.call("PING")
 print "Result: %s" % result

connect_future = client.connect()
main_future = talk_to_redis()
loop.add_future(main_future, callback)
loop.start()

When we call our coroutine, it returns a future. We add that main future
as before to the I/O loop. But whereas in the previous example, we had
to explicitely add our second asynchronous command to the I/O loop along
with its own callback, using a coroutine allows us to send our command
as a single statement and retrieve its result with a regular variable
assignment. We just need to remember to add the yield keyword before
the asynchronous command invocation.

In the context of an HTTP request handler, we don’t need to add our
top-level coroutine to the I/O loop ourselves, because the framework
handles it for us:

import tornado
from tornado.web import RequestHandler, Application, url
import tornadis

class GetHandler(RequestHandler):

 @tornado.gen.coroutine
 def get(self):
 client = tornadis.Client(port=6379)
 yield client.connect()
 yield client.call("BLPOP", "empty", 3)
 self.finish()

app = Application([url(r"/", GetHandler)])
app.listen(8888)
tornado.ioloop.IOLoop.current().start()

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Quickstart

 		
 API

 		
 Client API

 		
 PubSubClient API

 		
 Pipeline API

 		
 Pool API

 		
 Exceptions

 		
 Connection API

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

